Gas-Phase and Microsolvated Glycine Interacting with Boron Nitride Nanotubes. A B3LYP-D2* Periodic Study
نویسندگان
چکیده
منابع مشابه
Gas-Phase and Microsolvated Glycine Interacting with Boron Nitride Nanotubes. A B3LYP-D2* Periodic Study
The adsorption of glycine (Gly) both in gas-phase conditions and in a microsolvated state on a series of zig-zag (n,0) single-walled boron nitride nanotubes (BNNTs, n = 4, 6, 9 and 15) has been studied by means of B3LYP-D2* periodic calculations. Gas-phase Gly is found to be chemisorbed on the (4,0), (6,0) and (9,0) BNNTs by means of a dative interaction between the NH2 group of Gly and a B ato...
متن کاملDFT Study of Interactions of Carbenes with Boron Nitride Nanotubes
Single-walled boron nitride nanotubes are chosen as model reactants, and (10,0) and (6,6) are chosen as representatives of armchair and zigzag nanotubes, respectively, to study the interaction of carbenes of the type :CX2. It is found that, contrary to the case of carbon nanotubes, boron nitride tubes, particularly armchair BNNTs, do not show a propensity for cyclopropane ring formation. The SW...
متن کاملGrowing Carbon Nanotubes within Boron Nitride Nanotubes
The controlled synthesis and growth of carbon nanotubes (CNTs) has been a long standing challenge in the fabrication of carbon based materials for electronic applications. Due to the sensitivity to small changes in their structure, the successful integration of CNTs on electronic devices is conditioned to the preservation of the graphitic network of single and multiwalled nanotubes from externa...
متن کاملBoron Nitride Nanotubes for Spintronics
With the end of Moore's law in sight, researchers are in search of an alternative approach to manipulate information. Spintronics or spin-based electronics, which uses the spin state of electrons to store, process and communicate information, offers exciting opportunities to sustain the current growth in the information industry. For example, the discovery of the giant magneto resistance (GMR) ...
متن کاملA quantum chemistry study of curvature effects on boron nitride nanotubes/nanosheets for gas adsorption.
Quantum chemistry calculations were performed to investigate the effect of the surface curvature of a Boron Nitride (BN) nanotube/nanosheet on gas adsorption. Curved boron nitride layers with different curvatures interacting with a number of different gases including noble gases, oxygen, and water on both their convex and concave sides of the surface were studied using density functional theory...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Inorganics
سال: 2014
ISSN: 2304-6740
DOI: 10.3390/inorganics2020334